Introduction: The Xoft Axxent Electronic Brachytherapy Skin Applicator is a unique device that can be used for superficial skin or surface treatments. The applicator is a 25 mm SSD cone (1.0-5.0 mm SSD) with an air gap of 1.0-5.0 mm. The source is a 90% gold-plated platinum-iridium source, and the dose rate is 0.37 Gy/s. The applicator is designed to deliver a homogeneous dose to the skin surface. The source is held in a coaxial source tube that is connected to a computer-controlled source management system. The applicator is designed to deliver a homogeneous dose to the skin surface.

Materials and Methods: A 35 mm surface applicator assembly and a 50 mm source applicator were used in this work. The films for four different surface collimation cutouts are shown in figure 8. The films for four different surface collimation cutouts are shown in figure 8. Note that the ringing effect of the stepped filter is retained for each cutout. Also note that imperfections in the cutouts are reflected in the dose at the surface. The films for four different surface collimation cutouts are shown in figure 8. The films for four different surface collimation cutouts are shown in figure 8. Note that the ringing effect of the stepped filter is retained for each cutout. Also note that imperfections in the cutouts are reflected in the dose at the surface.

Discussion: The design of the Xoft Axxent surface applicator must include a flattening filter to reduce the dose to the source. The applicator was designed to deliver a homogeneous dose to the skin surface. The applicator was designed to deliver a homogeneous dose to the skin surface. The applicator was designed to deliver a homogeneous dose to the skin surface. The applicator was designed to deliver a homogeneous dose to the skin surface.

Conclusion: The Xoft Axxent applicator shows some sensitivity to the source-applicator treatment area arrangement as demonstrated here with model and measurements. Errors in SSDF should be minimized during treatment. The stepped filter design used here is superior to a flat filter for reducing dose at the surface. The stepped filter design used here is superior to a flat filter for reducing dose at the surface. The stepped filter design used here is superior to a flat filter for reducing dose at the surface. The stepped filter design used here is superior to a flat filter for reducing dose at the surface.

This research was sponsored in part by Xoft, Inc.

To contact the author: wholt@comcast.net